2018-04-18
论文Express 谷歌DeepMind最新动作:使用强化对抗学

  不过这些都依赖于人类输入数据的指导。人类需要告诉模型,哪些输入图片是猪,模型才能从中总结规律。

  谷歌使用一种名叫SPIRAL的对抗性学习方法,先用一个强化学习代理(Agent)随机画画,再将成果输入另一个神经网络鉴别器(Discriminator)。鉴别器能判断某图形是由Agent生成的,还是从真实照片的数据集中采样而来。

  如果代理生成的图像成功地骗过了鉴别器,就会获得奖励。也就是说,奖励函数本身也是由代理学习得来,人类并没有设置奖励函数。这样经过持续训练,强化学习得到的图像就会越来越接近真实照片。

  该方法与生成对抗网络(GANs)的区别是,GANs中的生成器通常是直接输出像素值的神经网络。但是强化学习代理通过编写图形程序与绘图环境交互来生成图像,也就是说,可以将生成的图像中绘画的笔触通过一个机械臂画笔实现出来。

  在MNIST手写数字图像生成的实验中,输入数据包括手写数字的图像,但没有明确指出它们是如何绘制的。强化学习代理需要通过自学数字书写的笔画(图案、笔触强弱、笔顺),控制画笔,重现特定的图像。接下来,鉴别器将作出预测,该图像是目标图像的副本,还是由代理生成的。图像越难鉴别,代理得到的回报越多。

  重要的是,这一切是可以解释的,因为它产生了一系列控制模拟画笔的动作。同时值得注意的是,这里对绘画的笔顺并没有强调,只要画得像,就不管是怎么画出来的了。

  在人脸的真实数据集上,强化对抗式学习也取得了不错的效果。绘制人脸时,代理能够捕捉到脸部的主要特征,例如脸型、肤色和发型,就像街头艺术家用寥寥几笔描绘肖像时一样:

  谷歌称,教会人工智能从对世界的观察中获得结构关系并表达出来,这是人工智能建立人类认知、概括和沟通能力的必由之路。

  现今纷纷扰扰的数据科学培训市场,是不是早已让你眼花缭乱,无处落足,还没有找到组织?不必慌张,土豆老司机拉住你的手,语重心长的要为你指条明道:究竟优质的数据科学教育培训是什么样的?

  没错!数据科学实训营就是这样的明星课程!从基础的 Python 编程和Scrapy爬虫,到熟练运用 Numpy/Pandas/Matplotlib/Seaborn/Scikit-learn 等多种Python库,打通机器学习的任督二脉,在真实的数据科学竞赛案例和数据挖掘项目的打磨下,完成从数据科学小白到骨灰级玩家的华丽转变!

  作为第4/5期的实训营助教,寄语小白学员:坚持跟上课程进度,按时完成所有作业,认真做好学习笔记,最终一定可以实现轻松入门数据科学哈!